Pan-sharpening with a Bayesian nonparametric dictionary learning model
نویسندگان
چکیده
Pan-sharpening, a method for constructing high resolution images from low resolution observations, has recently been explored from the perspective of compressed sensing and sparse representation theory. We present a new pansharpening algorithm that uses a Bayesian nonparametric dictionary learning model to give an underlying sparse representation for image reconstruction. In contrast to existing dictionary learning methods, the proposed method infers parameters such as dictionary size, patch sparsity and noise variances. In addition, our regularization includes image constraints such as a total variation penalization term and a new gradient penalization on the reconstructed PAN image. Our method does not require high resolution multiband images for dictionary learning, which are unavailable in practice, but rather the dictionary is learned directly on the reconstructed image as part of the inversion process. We present experiments on several images to validate our method and compare with several other wellknown approaches.
منابع مشابه
On the Integration of Topic Modeling and Dictionary Learning
A new nonparametric Bayesian model is developed to integrate dictionary learning and topic model into a unified framework. The model is employed to analyze partially annotated images, with the dictionary learning performed directly on image patches. Efficient inference is performed with a Gibbsslice sampler, and encouraging results are reported on widely used datasets.
متن کاملSeismic Signal Compression Using Nonparametric Bayesian Dictionary Learning via Clustering
We introduce a seismic signal compression method based on nonparametric Bayesian dictionary learning method via clustering. The seismic data is compressed patch by patch, and the dictionary is learned online. Clustering is introduced for dictionary learning. A set of dictionaries could be generated, and each dictionary is used for one cluster’s sparse coding. In this way, the signals in one clu...
متن کاملNonparametric Bayesian Dictionary Learning for Machine Listening
Machine listening, i.e., giving machines the ability to extract useful information from the acoustic world in a manner similar to listeners, is a relatively undeveloped field that presents many interesting challenges. In the real world, sound rarely comes from a single source. For example, a piece of music may contain voices from the singers and accompaniments from different instruments, or a r...
متن کاملWideband DOA Estimation via Sparse Bayesian Learning over a Khatri-Rao Dictionary
This paper deals with the wideband directionof-arrival (DOA) estimation by exploiting the multiple measurement vectors (MMV) based sparse Bayesian learning (SBL) framework. First, the array covariance matrices at different frequency bins are focused to the reference frequency by the conventional focusing technique and then transformed into the vector form. Then a matrix called the Khatri-Rao di...
متن کاملCompressive Sensing for Pan-sharpening
Based on compressive sensing framework and sparse reconstruction technology, a new pan-sharpening method, named Sparse Fusion of Images (SparseFI, pronounced as sparsify), is proposed in [1]. In this paper, the proposed SparseFI algorithm is validated using UltraCam and WorldView-2 data. Visual and statistic analysis show superior performance of SparseFI compared to the existing conventional pa...
متن کامل